Skip to content

Stokes integrators

stokes_integrators

This module provides a fine-tuned solver class for the Stokes system of conservation equations and a function to automatically set the associated null spaces. Users instantiate the StokesSolver class by providing relevant parameters and call the solve method to request a solver update.

iterative_stokes_solver_parameters = {'mat_type': 'matfree', 'ksp_type': 'preonly', 'pc_type': 'fieldsplit', 'pc_fieldsplit_type': 'schur', 'pc_fieldsplit_schur_type': 'full', 'fieldsplit_0': {'ksp_type': 'cg', 'ksp_rtol': 1e-05, 'ksp_max_it': 1000, 'pc_type': 'python', 'pc_python_type': 'gadopt.SPDAssembledPC', 'assembled_pc_type': 'gamg', 'assembled_mg_levels_pc_type': 'sor', 'assembled_pc_gamg_threshold': 0.01, 'assembled_pc_gamg_square_graph': 100, 'assembled_pc_gamg_coarse_eq_limit': 1000, 'assembled_pc_gamg_mis_k_minimum_degree_ordering': True}, 'fieldsplit_1': {'ksp_type': 'fgmres', 'ksp_rtol': 0.0001, 'ksp_max_it': 200, 'pc_type': 'python', 'pc_python_type': 'firedrake.MassInvPC', 'Mp_pc_type': 'ksp', 'Mp_ksp_ksp_rtol': 1e-05, 'Mp_ksp_ksp_type': 'cg', 'Mp_ksp_pc_type': 'sor'}} module-attribute

Default iterative solver parameters for solution of stokes system.

We configure the Schur complement approach as described in Section of 4.3 of Davies et al. (2022), using PETSc's fieldsplit preconditioner type, which provides a class of preconditioners for mixed problems that allows a user to apply different preconditioners to different blocks of the system.

The fieldsplit_0 entries configure solver options for the velocity block. The linear systems associated with this matrix are solved using a combination of the Conjugate Gradient (cg) method and an algebraic multigrid preconditioner (GAMG).

The fieldsplit_1 entries contain solver options for the Schur complement solve itself. For preconditioning, we approximate the Schur complement matrix with a mass matrix scaled by viscosity, with the viscosity provided through the optional mu keyword argument to Stokes solver. Since this preconditioner step involves an iterative solve, the Krylov method used for the Schur complement needs to be of flexible type, and we use FGMRES by default.

We note that our default solver parameters can be augmented or adjusted by accessing the solver_parameter dictionary, for example:

   stokes_solver.solver_parameters['fieldsplit_0']['ksp_converged_reason'] = None
   stokes_solver.solver_parameters['fieldsplit_0']['ksp_rtol'] = 1e-3
   stokes_solver.solver_parameters['fieldsplit_0']['assembled_pc_gamg_threshold'] = -1
   stokes_solver.solver_parameters['fieldsplit_1']['ksp_converged_reason'] = None
   stokes_solver.solver_parameters['fieldsplit_1']['ksp_rtol'] = 1e-2
Note

G-ADOPT defaults to iterative solvers in 3-D.

direct_stokes_solver_parameters = {'mat_type': 'aij', 'ksp_type': 'preonly', 'pc_type': 'lu', 'pc_factor_mat_solver_type': 'mumps'} module-attribute

Default direct solver parameters for solution of Stokes system.

Configured to use LU factorisation, using the MUMPS library.

Note

G-ADOPT defaults to direct solvers in 2-D.

newton_stokes_solver_parameters = {'snes_type': 'newtonls', 'snes_linesearch_type': 'l2', 'snes_max_it': 100, 'snes_atol': 1e-10, 'snes_rtol': 1e-05} module-attribute

Default solver parameters for non-linear systems.

We use a setup based on Newton's method (newtonls) with a secant line search over the L2-norm of the function.

StokesSolver(z, T, approximation, bcs={}, mu=1, quad_degree=6, solver_parameters=None, J=None, constant_jacobian=False, **kwargs)

Solves the Stokes system in place.

Parameters:

Name Type Description Default
z Function

Firedrake function representing mixed Stokes system

required
T Function

Firedrake function representing temperature

required
approximation BaseApproximation

Approximation describing system of equations

required
bcs dict[int, dict[str, Number]]

Dictionary of identifier-value pairs specifying boundary conditions

{}
mu Function | Number

Firedrake function representing dynamic viscosity

1
quad_degree int

Quadrature degree. Default value is 2p + 1, where p is the polynomial degree of the trial space

6
solver_parameters Optional[dict[str, str | Number] | str]

Either a dictionary of PETSc solver parameters or a string specifying a default set of parameters defined in G-ADOPT

None
J Optional[Function]

Firedrake function representing the Jacobian of the system

None
constant_jacobian bool

Whether the Jacobian of the system is constant

False
Source code in g-adopt/gadopt/stokes_integrators.py
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
def __init__(
    self,
    z: fd.Function,
    T: fd.Function,
    approximation: BaseApproximation,
    bcs: dict[int, dict[str, Number]] = {},
    mu: fd.Function | Number = 1,
    quad_degree: int = 6,
    solver_parameters: Optional[dict[str, str | Number] | str] = None,
    J: Optional[fd.Function] = None,
    constant_jacobian: bool = False,
    **kwargs,
):
    self.Z = z.function_space()
    self.mesh = self.Z.mesh()
    self.test = fd.TestFunctions(self.Z)
    self.equations = StokesEquations(self.Z, self.Z, quad_degree=quad_degree,
                                     compressible=approximation.compressible)
    self.solution = z
    self.solution_old = None
    self.approximation = approximation
    self.mu = ensure_constant(mu)
    self.J = J
    self.constant_jacobian = constant_jacobian
    self.linear = not depends_on(self.mu, self.solution)

    self.solver_kwargs = kwargs
    u, p = fd.split(self.solution)
    self.k = upward_normal(self.Z.mesh())
    self.fields = {
        'velocity': u,
        'pressure': p,
        'viscosity': self.mu,
        'interior_penalty': fd.Constant(2.0),  # allows for some wiggle room in imposition of weak BCs
                                               # 6.25 matches C_ip=100. in "old" code for Q2Q1 in 2d.
        'source': self.approximation.buoyancy(p, T) * self.k,
        'rho_continuity': self.approximation.rho_continuity(),
    }

    self.weak_bcs = {}
    self.strong_bcs = []
    for id, bc in bcs.items():
        weak_bc = {}
        for bc_type, value in bc.items():
            if bc_type == 'u':
                self.strong_bcs.append(fd.DirichletBC(self.Z.sub(0), value, id))
            elif bc_type == 'ux':
                self.strong_bcs.append(fd.DirichletBC(self.Z.sub(0).sub(0), value, id))
            elif bc_type == 'uy':
                self.strong_bcs.append(fd.DirichletBC(self.Z.sub(0).sub(1), value, id))
            elif bc_type == 'uz':
                self.strong_bcs.append(fd.DirichletBC(self.Z.sub(0).sub(2), value, id))
            else:
                weak_bc[bc_type] = value
        self.weak_bcs[id] = weak_bc

    self.F = 0
    for test, eq, u in zip(self.test, self.equations, fd.split(self.solution)):
        self.F -= eq.residual(test, u, u, self.fields, bcs=self.weak_bcs)

    if isinstance(solver_parameters, dict):
        self.solver_parameters = solver_parameters
    else:
        if self.linear:
            self.solver_parameters = {"snes_type": "ksponly"}
        else:
            self.solver_parameters = newton_stokes_solver_parameters.copy()

        if INFO >= log_level:
            self.solver_parameters["snes_monitor"] = None

        if isinstance(solver_parameters, str):
            match solver_parameters:
                case "direct":
                    self.solver_parameters.update(direct_stokes_solver_parameters)
                case "iterative":
                    self.solver_parameters.update(
                        iterative_stokes_solver_parameters
                    )
                case _:
                    raise ValueError(
                        f"Solver type '{solver_parameters}' not implemented."
                    )
        elif self.mesh.topological_dimension() == 2 and self.mesh.cartesian:
            self.solver_parameters.update(direct_stokes_solver_parameters)
        else:
            self.solver_parameters.update(iterative_stokes_solver_parameters)

            if DEBUG >= log_level:
                self.solver_parameters['fieldsplit_0']['ksp_converged_reason'] = None
                self.solver_parameters['fieldsplit_1']['ksp_monitor'] = None
            elif INFO >= log_level:
                self.solver_parameters['fieldsplit_1']['ksp_converged_reason'] = None

    # solver object is set up later to permit editing default solver parameters specified above
    self._solver_setup = False

setup_solver()

Sets up the solver.

Source code in g-adopt/gadopt/stokes_integrators.py
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
def setup_solver(self):
    """Sets up the solver."""
    # mu used in MassInvPC:
    mu_over_rho = self.mu / self.approximation.rho_continuity()
    if self.constant_jacobian:
        z_tri = fd.TrialFunction(self.Z)
        F_stokes_lin = fd.replace(self.F, {self.solution: z_tri})
        a, L = fd.lhs(F_stokes_lin), fd.rhs(F_stokes_lin)
        self.problem = fd.LinearVariationalProblem(a, L, self.solution,
                                                   bcs=self.strong_bcs,
                                                   constant_jacobian=True)
        self.solver = fd.LinearVariationalSolver(self.problem,
                                                 solver_parameters=self.solver_parameters,
                                                 options_prefix=self.name,
                                                 appctx={"mu": mu_over_rho},
                                                 **self.solver_kwargs)
    else:
        self.problem = fd.NonlinearVariationalProblem(self.F, self.solution,
                                                      bcs=self.strong_bcs, J=self.J)
        self.solver = fd.NonlinearVariationalSolver(self.problem,
                                                    solver_parameters=self.solver_parameters,
                                                    options_prefix=self.name,
                                                    appctx={"mu": mu_over_rho},
                                                    **self.solver_kwargs)
    self._solver_setup = True

solve()

Solves the system.

Source code in g-adopt/gadopt/stokes_integrators.py
325
326
327
328
329
330
def solve(self):
    """Solves the system."""
    if not self._solver_setup:
        self.setup_solver()
    self.solution_old = self.solution.copy(deepcopy=True)
    self.solver.solve()

create_stokes_nullspace(Z, closed=True, rotational=False, translations=None, ala_approximation=None, top_subdomain_id=None)

Create a null space for the mixed Stokes system.

Parameters:

Name Type Description Default
Z WithGeometry

Firedrake mixed function space associated with the Stokes system

required
closed bool

Whether to include a constant pressure null space

True
rotational bool

Whether to include all rotational modes

False
translations Optional[list[int]]

List of translations to include

None
ala_approximation Optional[AnelasticLiquidApproximation]

AnelasticLiquidApproximation for calculating (non-constant) right nullspace

None
top_subdomain_id Optional[str | int]

Boundary id of top surface. Required when providing ala_approximation.

None

Returns:

Type Description
MixedVectorSpaceBasis

A Firedrake mixed vector space basis incorporating the null space components

Source code in g-adopt/gadopt/stokes_integrators.py
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
def create_stokes_nullspace(
    Z: fd.functionspaceimpl.WithGeometry,
    closed: bool = True,
    rotational: bool = False,
    translations: Optional[list[int]] = None,
    ala_approximation: Optional[AnelasticLiquidApproximation] = None,
    top_subdomain_id: Optional[str | int] = None,
) -> fd.nullspace.MixedVectorSpaceBasis:
    """Create a null space for the mixed Stokes system.

    Arguments:
      Z: Firedrake mixed function space associated with the Stokes system
      closed: Whether to include a constant pressure null space
      rotational: Whether to include all rotational modes
      translations: List of translations to include
      ala_approximation: AnelasticLiquidApproximation for calculating (non-constant) right nullspace
      top_subdomain_id: Boundary id of top surface. Required when providing
                        ala_approximation.

    Returns:
      A Firedrake mixed vector space basis incorporating the null space components

    """
    # ala_approximation and top_subdomain_id are both needed when calculating right nullspace for ala
    if (ala_approximation is None) != (top_subdomain_id is None):
        raise ValueError("Both ala_approximation and top_subdomain_id must be provided, or both must be None.")

    X = fd.SpatialCoordinate(Z.mesh())
    dim = len(X)
    V, W = Z.subfunctions

    if rotational:
        if dim == 2:
            rotV = fd.Function(V).interpolate(fd.as_vector((-X[1], X[0])))
            basis = [rotV]
        elif dim == 3:
            x_rotV = fd.Function(V).interpolate(fd.as_vector((0, -X[2], X[1])))
            y_rotV = fd.Function(V).interpolate(fd.as_vector((X[2], 0, -X[0])))
            z_rotV = fd.Function(V).interpolate(fd.as_vector((-X[1], X[0], 0)))
            basis = [x_rotV, y_rotV, z_rotV]
        else:
            raise ValueError("Unknown dimension")
    else:
        basis = []

    if translations:
        for tdim in translations:
            vec = [0] * dim
            vec[tdim] = 1
            basis.append(fd.Function(V).interpolate(fd.as_vector(vec)))

    if basis:
        V_nullspace = fd.VectorSpaceBasis(basis, comm=Z.mesh().comm)
        V_nullspace.orthonormalize()
    else:
        V_nullspace = V

    if closed:
        if ala_approximation:
            p = ala_right_nullspace(W=W, approximation=ala_approximation, top_subdomain_id=top_subdomain_id)
            p_nullspace = fd.VectorSpaceBasis([p], comm=Z.mesh().comm)
            p_nullspace.orthonormalize()
        else:
            p_nullspace = fd.VectorSpaceBasis(constant=True, comm=Z.mesh().comm)
    else:
        p_nullspace = W

    return fd.MixedVectorSpaceBasis(Z, [V_nullspace, p_nullspace])

ala_right_nullspace(W, approximation, top_subdomain_id)

Compute pressure nullspace for Anelastic Liquid Approximation.

Parameters:

Name Type Description Default
W WithGeometry

pressure function space

required
approximation AnelasticLiquidApproximation

AnelasticLiquidApproximation with equation parameters

required
top_subdomain_id str | int

boundary id of top surface

required

Returns:

Type Description

pressure nullspace solution

To obtain the pressure nullspace solution for the Stokes equation in Anelastic Liquid Approximation, which includes a pressure-dependent buoyancy term, we try to solve the equation:

\[ -nabla p + g "Di" rho chi c_p/(c_v gamma) hatk p = 0 \]

Taking the divergence:

\[ -nabla * nabla p + nabla * (g "Di" rho chi c_p/(c_v gamma) hatk p) = 0, \]

then testing it with q:

\[ int_Omega -q nabla * nabla p dx + int_Omega q nabla * (g "Di" rho chi c_p/(c_v gamma) hatk p) dx = 0 \]

followed by integration by parts:

\[ int_Gamma -bb n * q nabla p ds + int_Omega nabla q cdot nabla p dx + int_Gamma bb n * hatk q g "Di" rho chi c_p/(c_v gamma) p dx - int_Omega nabla q * hatk g "Di" rho chi c_p/(c_v gamma) p dx = 0 \]

This elliptic equation can be solved with natural boundary conditions by imposing our original equation above, which eliminates all boundary terms:

\[ int_Omega nabla q * nabla p dx - int_Omega nabla q * hatk g "Di" rho chi c_p/(c_v gamma) p dx = 0. \]

However, if we do so on all boundaries we end up with a system that has the same nullspace, as the one we are after (note that we ended up merely testing the original equation with \(nabla q\)). Instead we use the fact that the gradient of the null mode is always vertical, and thus the null mode is constant at any horizontal level (geoid), specifically the top surface. Choosing any nonzero constant for this surface fixes the arbitrary scalar multiplier of the null mode. We choose the value of one and apply it as a Dirichlet boundary condition.

Note that this procedure does not necessarily compute the exact nullspace of the discretised Stokes system. In particular, since not every test function \(v in V\), the velocity test space, can be written as \(v=nabla q\) with \(q in W\), the pressure test space, the two terms do not necessarily exactly cancel when tested with \(v\) instead of \(nabla q\) as in our final equation. However, in practice the discrete error appears to be small enough, and providing this nullspace gives an improved convergence of the iterative Stokes solver.

Source code in g-adopt/gadopt/stokes_integrators.py
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
def ala_right_nullspace(
        W: fd.functionspaceimpl.WithGeometry,
        approximation: AnelasticLiquidApproximation,
        top_subdomain_id: str | int):
    r"""Compute pressure nullspace for Anelastic Liquid Approximation.

        Arguments:
          W: pressure function space
          approximation: AnelasticLiquidApproximation with equation parameters
          top_subdomain_id: boundary id of top surface

        Returns:
          pressure nullspace solution

        To obtain the pressure nullspace solution for the Stokes equation in Anelastic Liquid Approximation,
        which includes a pressure-dependent buoyancy term, we try to solve the equation:

        $$
          -nabla p + g "Di" rho chi c_p/(c_v gamma) hatk p = 0
        $$

        Taking the divergence:

        $$
          -nabla * nabla p + nabla * (g "Di" rho chi c_p/(c_v gamma) hatk p) = 0,
        $$

        then testing it with q:

        $$
            int_Omega -q nabla * nabla p dx + int_Omega q nabla * (g "Di" rho chi c_p/(c_v gamma) hatk p) dx = 0
        $$

        followed by integration by parts:

        $$
            int_Gamma -bb n * q nabla p ds + int_Omega nabla q cdot nabla p dx +
            int_Gamma bb n * hatk q g "Di" rho chi c_p/(c_v gamma) p dx -
            int_Omega nabla q * hatk g "Di" rho chi c_p/(c_v gamma) p dx = 0
        $$

        This elliptic equation can be solved with natural boundary conditions by imposing our original equation above, which eliminates
        all boundary terms:

        $$
          int_Omega nabla q * nabla p dx - int_Omega nabla q * hatk g "Di" rho chi c_p/(c_v gamma) p dx = 0.
        $$

        However, if we do so on all boundaries we end up with a system that has the same nullspace, as the one we are after (note that
        we ended up merely testing the original equation with $nabla q$). Instead we use the fact that the gradient of the null mode
        is always vertical, and thus the null mode is constant at any horizontal level (geoid), specifically the top surface. Choosing
        any nonzero constant for this surface fixes the arbitrary scalar multiplier of the null mode. We choose the value of one
        and apply it as a Dirichlet boundary condition.

        Note that this procedure does not necessarily compute the exact nullspace of the *discretised* Stokes system. In particular,
        since not every test function $v in V$, the velocity test space, can be written as $v=nabla q$ with $q in W$, the
        pressure test space, the two terms do not necessarily exactly cancel when tested with $v$ instead of $nabla q$ as in our
        final equation. However, in practice the discrete error appears to be small enough, and providing this nullspace gives
        an improved convergence of the iterative Stokes solver.
    """
    W = fd.FunctionSpace(mesh=W.mesh(), family=W.ufl_element())
    q = fd.TestFunction(W)
    p = fd.Function(W, name="pressure_nullspace")

    # Fix the solution at the top boundary
    bc = fd.DirichletBC(W, 1., top_subdomain_id)

    F = fd.inner(fd.grad(q), fd.grad(p)) * fd.dx

    k = upward_normal(W.mesh())

    F += - fd.inner(fd.grad(q), k * approximation.dbuoyancydp(p, fd.Constant(1.0)) * p) * fd.dx

    fd.solve(F == 0, p, bcs=bc)
    return p